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Abstract—Sleep deprivation is a public health problem which
must be carefully examined and treated. Several studies have
proposed automatic methods aiming to identify when a person
falls asleep. The identification of the sleep state can help sleep
experts to diagnose and prevent certain disorders such as apnea
and insomnia. In the current work, the discrete wavelet transform
is employed in order to analyze signals from a single electroen-
cephalogram channel. Statistical features are then extracted from
the wavelet coefficients, representing the characteristics of specific
frequency ranges of the signal. Afterwards, these features are
carried out to the classification procedure. Three classical decision
tree algorithms are considered aiming to assess the extracted
features’ robustness. Results yielding more than 95% of accuracy
are achieved in two of the three analyzed classifiers.

Keywords—Awake/Sleep stages scoring; discrete wavelet trans-
Jorm (DWT); electroencephalogram (EEG); decision tree algo-
rithms.

I. INTRODUCTION

The comprehension of the human sleep can help doctors
to diagnose and avert sleep-related disorders such as apnea,
narcolepsy and insomnia [1]. Several researches, as [2], [3],
have proposed automatic methods to distinguish when a sub-
ject is awake or sleeping based on simple wearable devices,
reducing therefore health care costs [3]. Cole et al. [2] and
Tilmanne et al. [4] have proposed an awake/sleep scoring
method based on actigraph signals, respiration effort and
accelerometer signals. In this context, an introductory study
is presented here, investigating analysis and classification al-
gorithms, which, in the future, will be embedded in integrated
systems for processing electroencephalogram (EEG) signals.
However, at the initial development phase, the execution of
these algorithms is made in conventional desktop computers
over single channel EEG signals from a public polysomno-
graph (PSG) database.

Since 1983, the distinction of sleep and awake stages
through physiological signals is the goal of several researches.
In van Luijtelaar and Coenen [5] study, which method’s
input are the non-invasive EEG and electromyogram (EMG)
signals, 93.6% of accuracy is achieved in experiments with
rats. Tilmanne et al. [4] have employed their methodology in
an infant polysomnograph database, reaching around 86.9%
of accuracy when considering a healthy group of infants.
Cole et al. [2] and Karlen & Floreano [3] methods achieved, re-
spectively, 91.9% and 90.4 £ 3.6% of accuracy also consider-
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ing healthy subjects. In the current work, signals from healthy
patients, aged between 25 and 34, of a public polysomnog-
raphy database — Physionet Sleep EDF [Expanded] [6] — are
considered.

Independently of the used polysomnograph or actigraph
signals, in order to be analyzed, they must be divided into small
time intervals called epochs. According to both standards for
sleep classification - the Rechtschaffen’s and Kales’ (R&K)
recommendations [7] and the American Academy of Sleep
Medicine [8] - the length of these epochs is often 20 or 30
seconds. Here, 30-second epochs are adopted. Different tech-
niques to analyze and to extract features of these epochs as well
as different classification algorithms can be found in literature.
The current study identifies the sleep and awake stages through
wavelet analysis of signals from a single EEG channel; other
EEG channels as well as electrooculogram (EOG), electrocar-
diogram (ECG) and EMG signals are discarded. Afterwards
the wavelet analysis, three statistical features are applied to
the coefficients, generating distinct magnitudes for awake and
sleep stages. The robustness of the chosen features is assessed
though three decision tree classifiers: random tree, reduced
error pruning (REP) tree and classification and regression
tree (CART) [9]. The main contribution of this study is to
provide a methodology based on a single EEG channel and
reduced feature set allied to the usage of low computational
cost decision tree algorithms.

The remaining of this work is organized as follows: Sec-
tion II presents the proposed methodology. The data descrip-
tion and preprocessing procedure are presented in Section II-A.
Section II-B briefly describes the chosen discrete wavelet
transform and also explains the feature extraction. The results
are pointed out and discussed in Section III. Finally, the
conclusions are drawn in Section IV.

II. PROPOSED METHODOLOGY
The proposed methodology is described in detail in the
following subsections.

A. Data description and preprocessing

The experimental data considered in this work was obtained
from the Physionet Sleep EDF [Expanded] public database [6].
This database offers recordings from two EEG channel — the
Fpz-Cz and Pz-Oz — sampled at 100Hz besides EOG and EMG



signals of Caucasian volunteers. Here, only the Pz-Oz EEG
channel is used. Signals from all healthy subjects without any
sleep-related medication were selected in this study. The total
quantity of recordings is 106,376 30-second epochs (about
886.5 hours). In order to balance the data, a subsample of
the complete set of epochs was obtained. This subset contains
34,023 epochs in the awake stage and the same quantity
of epochs in the sleep stage (which comprises the different
patterns of sleep stages S1, S2, S3 and S4 besides rapid eye
movement (REM) stage according to the R&K recommenda-
tions). Expert’s scores, i.e. hypnogram annotations, for each
30-second time segment are jointly provided in the database.
These annotations are considered as a correct reference and
are used to train and test the decision tree algorithms.

B. Discrete wavelet transform and feature extraction

Over each epoch, a four-level Daubechies 2 (Db2) discrete
wavelet transform (DWT) [10] is applied in order to separate
the signal components approximately into specific cerebral
rhythms. The wavelet transform has good representativity in
both time and scale domains [10] unlike Fourier transform
which temporal mark is easily lost. Furthermore, the wavelets
can efficiently analyze non-stationary signals — as the EEG
ones — and allow to extract different statistical properties of
them [11].

Since the signals of interest were sampled at 100Hz, it
is possible to decompose them, using a Db2 wavelet, as
follows: the first wavelet coefficient set contains the signal’s
information relative to 25-50Hz which is close to the low-
gamma rhythm (30-50Hz). The second wavelet coefficient set
has the 12.5-25Hz frequency range which contains relevant
information about the beta rhythm (13-30Hz). The third and
fourth wavelet coefficient sets have, respectively, informations
about data in 6.25-12.5Hz and 3.125-6.25Hz. The main as-
sociated rhythms to these sets are, respectively, the alpha (4-
13Hz) and theta (0.5-4Hz). Fig. 1 illustrates the 4-level wavelet
decomposition scheme and the main rhythm associated with
each wavelet coefficient set.

The knowledge of the signal’s behavior in each one of these
specific bands, thanks to the wavelet analysis, allows to extract
particular characteristics of it, assisting the chosen classifier
to accurately recognize the awake and sleep stages. The low-
gamma rhythm is associated to activities in the awake stage
such as attention [12]. Beta rhythm occurs more intensely in
the awake stage [13]. In the transitions from the wakefulness
to resting conditions, alpha gradually decreases and theta
increases [11].

In order to emphasize these differences, besides reducing
the data dimensionality, the standard deviation, skewness and
kurtosis are extracted from each one of the wavelet coeffi-
cient sets of interest. Statistical measurements have already
been successfully used to analyze physiological signals as
performed in [14], [15] and commented in [16]. Fig. 2 shows
the differences in magnitude of the selected features in each
decomposition level. It is possible to notice the sensitivity
of specific features per level around the moments in which
the subject wakes up. For better visualization, skewness and
kurtosis were multiplied by a factor 2.

Low-gamma

Fig. 1. Four-level wavelet decomposition scheme. The tree’s root present the
input epoch sampled at 100Hz. The remainder nodes are the scale (in white)
and wavelet (in gray) coefficient sets. Main cerebral rhythm related to each
wavelet coefficient set is shown on its right side.

C. Decision tree algorithms

A decision tree is a computational tree whose internal
nodes are tests made on input patterns (the features) and the
leaf nodes are classes (in this case, awake or sleep) [17]. There
are several algorithms based on decision trees as the random
trees, REP trees, CART, J48 tree, ID3 tree and C.45 tree. They
can differ in relation to the attribute type (numerical and/or
categorical), number of child nodes (binary tree or not), rules
for growing themselves, etc. In this study, we focus in the
three first tree decision algorithms. The Weka [18] data mining
tool is used for the classification task based on the F' = 12
(standard deviation, kurtosis and skewness for four wavelet
coefficient sets) extracted features.

The random trees select randomly K = loga(F) + 1
features to grow themselves and do not apply pruning tech-
niques. By other hand, the REP trees grow by computing the
information gain estimator [1] for each attribute. Furthermore,
REP trees apply a reduced error pruning technique. CART
grow by estimating the Gini impurity [19] besides applying a
pruning technique that prizes at minimal complexity.

All these tree algorithms are grown by considering a
relevant to the problem training set. The complete balanced
feature dataset is then split randomly into training and testing
sets. Fig. 3 illustrates the features’ dataset organization. The
training set is used to grown the tree algorithms, whilst the
testing one is used to evaluate them. Approximately a half
of the features in the training and testing sets refer to the
awake stage whilst the other half is relative to the sleep stage
according to the experts’ annotation.

III. RESULTS AND DISCUSSION

Several metrics can be used to evaluate a classification
method, as the accuracy, precision, recall (sensitivity), and
Cohen’s kappa coefficient [20]. These metrics can be computed
through analysis of the confusion matrix. The confusion matrix
relates the accepted as truth data (sleep experts’ scoring) versus
the predicted data (the classifier output) and gives an overview
of all hits and misses by class.
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Fig. 2.

Epoch index

Standard deviation, kurtosis (multiplied by 2) and skewness (multiplied by 2) for several 30-second epochs of the first night recording of the subject

labeled as 05 according to the Physionet. The areas where the background is white are relative to the awake stage whilst those where the background is gray

are relative to the sleep stage. These markings are according to the sleep expert:
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Fig. 3. Data preprocessing and separation in training and testing sets.

LetTP, TN, FP and F' N be the quantity of true positives,
true negatives, false positives and false negatives. Thus, it is
possible to calculate the method’s accuracy (ACC) through

TP+TN 0
TP+TN+FP+FN’

Similarly, the precision (PRFE) and recall (RC'L) for each
class are given, respectively, by

ACC =
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The Cohen’s kappa coefficient (k) can be calculate through
o — Te
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where 7 is an observational probability of agreement and 7,
is a expected probability by chance [20]. The values of 7y and
7. are computed respectively through [1]
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where N = 2 is the quantity of classes of the problem and
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Tables I, IT and III present, respectively, the confusion
matrix for the random tree, REP tree and CART algorithms.
Its is possible to notice the high performance achieved by all
the methods through analysis of the precision and recall values
(optimal classifier has 100% of precision and recall).

TABLE 1. CONFUSION MATRIX FOR RANDOM TREE
Physionet’s annotation
Awake Sleep
Classifier’s Awake 10871 684
score Sleep 688 10893
Precision (%) 94.1 94.1
Recall (%) 94.0 94.1

Accuracies reached 94.07%, 95.79% and 95.72% and Co-
hen’s kappa coefficient, 0.88, 0.92 and 0.91, respectively, for



TABLE II. CONFUSION MATRIX FOR REP TREE

Physionet’s annotation

Awake Sleep
Classifier’s Awake 11147 563
score Sleep 412 11014
Precision (%) 95.2 96.4
Recall (%) 96.4 95.1

TABLE III. CONFUSION MATRIX FOR CART

Physionet’s annotation

Awake Sleep
Classifier's  Awake 11126 558
score Sleep 433 11019
Precision (%) 95.2 96.2
Recall (%) 96.3 95.2

the random tree, REP tree and CART algorithms. The average
accuracy and Cohen’s kappa are also computed after a 10-
fold cross-validation [19]. In this case, the complete balanced
feature dataset (containing 68,046 30-second epochs) is con-
sidered. Results achieved, respectively for random tree, REP
tree and CART algorithms, 94.39%, 95.63% and 95.64% of
accuracy and 0.89, 0.91 and 0.91 of Cohen’s kappa coefficient.
According to Landis and Koch [20], methods which kappa
coefficient is greater than 0.80 are considered excellent.

In comparison with a recent study, Sano and Picard [21],
the current study has comparable or even higher accuracy
in relation to the considered EEG (83%), wrist (73%) and
combined EEG and wrist feature sets (95%). These authors
have assessed their feature sets in k-nearest neighbor (with
k=1-4) and support vector machines under a 10-fold cross-
validation. Additionally, the results presented in the current
study also outperform those reported in Section I.

IV. CONCLUSION

This study performs the awake and sleep stages separation
through analysis of a single EEG channel, which in real
applications can be acquired by a portable grade consumer
EEG headset. Furthermore, the four-level discrete wavelet
transform of Daubechies family with two vanish moments
(Db2) is considered as signal analyzer and feature extractor.
Three statistical measures — the standard deviation, kurtosis
and skewness — are computed for all the wavelet coefficient
sets. In order to test the selected feature set, three decision tree
algorithms are evaluated with the same training and testing
sets.

The methodology is assessed through precision, recall,
accuracy and Cohen’s kappa coefficient measurements. The
achieved results suggest that (i) the feature set is robust and
(i) simple decision tree techniques with or without pruning can
provide good results in terms of sleep and awake identification.

Future works include the investigation of other features in
the time and scale domains besides the test of the methodology
presented in this study in a real scenario with a consumer grade
EEG headset.
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